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Goanna Metabolism: Different to Other Lizards,
and if so, What are the Ecological Consequences?

GraHAM THOMPSON

Abstract

Standard, maximal and field metabolic rates of different species of Varanus have been
determined and are discussed in terms of different parameters such as ecology, behaviour. diet,
home ranges, etc. In general, actively foraging goannas exceed all three different metabolic
rates of similar-sized lizards with exception of two small species which are rather ambush
predators. The higher field metabolic rate of large goannas seems to be correlated with larger
home ranges.
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Introduction

The metabolism of the goannas has often been compared with other lizards (BarRTHO-
LOMEW & TUCKER 1964: BENNETT 1972, 1982; BENNETT & DawsoN 1976: ANDREWS &
PoucH 1985: Beck & Lowe 1994: Christian & CoNLEY 1994). BARTHOLOMEW and
Tucker (1964), in one of the earliest comparative reports, suggest that goannas bridge
the gap in metabolic rate that has generally been assumed to exist between reptiles
and mammals. Subsequently, BENNETT (1972) reports the standard metabolic rate of
V. gouldii to be similar to that of a comparably sized lizard. however, its capacity to
transport oxygen during activity was higher than for other lizards.

Although Anprews and Pouch (1985) reported a statistical variation among
families of squamate reptiles, a posteriori Tukey test showed that the family with the
highest mean standard metabolic rate (Varanidae) and the family with the lowest
mean standard metabolic rate (Boidae) were not statistically different (P > 0.05).
There were, however, differences in the standard metabolic rate among ecological
groups, with day-active predators having a significantly higher metabolic rate than do
reclusive predators, and the latter having a significantly higher metabolic rate than do
fossorial predators.

More recently CHristian and ConLEY (1994) report the standard metabolic rate of
Tiliqua rugosa, a large-bodied. slow moving, omnivorous skink, not to be different
to that of V. rosenbergi, V. gouldii, V. panoptes and V. mertensi at 35 °C. However,
T. rugosa had a lower maximal metabolic rate than the four goannas at 35 °C. Beck
and Lowe (1994) report the resting metabolism of the relatively large, sedentary,
carnivorous Heloderma horridum and H. suspectum to be significantly lower than that
for similar-sized goannas.

Metabolic rate per unit body mass generally declines with increasing body mass
(BENNETT & Dawson 1976). Very often the relationship between metabolism and body
mass is not linear, making it difficult to analyse or deal with the relationship
quantitatively. To normalise the variance and to obtain a linear relationship. it is often
appropriate to logarithmically-transform the data for both variables (i.e., log Y = log
a + b log X, where a and b are regression coefficients). The value of b therefore
provides the ratio of the exponential rate of change in the dependent variable for a
given change in the independent variable (most often mass). If we wish to compare
the metabolism of two different organisms of different mass. it is most often

Horx. H.-G. & W. BonuE (eds.): Advances in monitor research II. - Mertensiella 11. 79-90.
© 1999 Deutsche Gesellschaft fiir Herpetologie und Terrarienkunde e.V. (DGHT) 79




GranaM THOMPSON

accomplished by the general form of a power curve, or the allometric formula
(HUXLEY 1932; McManon & BONNER 1983): y = ax”, where ¢ and b are constants. a
is the power coefficient and b is the power exponent or the slope of the regression line
representing the relationship between the logarithmically-transformed dependent
variable and the logarithmically-transformed independent variable. The allometric
relationship is descriptive and does not explain the underlying reason(s) for the
relationship.

The theoretical and empirical relationship between body mass and metabolic rate
have been controversial issues for many years (KLEIBER 1932, 1961; Bropy 1945: von
BERTALANFFY 1957; GUNTHER 1975: HEUSNER 1982, 1984; WitnErs 1992). For verte-
brates, 0.75 is still the best approximation for scaling inter-specific metabolism to
body mass. Reptiles, however, seem to be different with standard metabolic rate
scaling with body mass"® (Anprews & Pouch 1983).

There are three basic metabolic measures used to compare the metabolism of
reptiles. Standard metabolic rate, which is measured at a constant temperature, during
their post-absorptive and quiescent phases (normally at night for goannas), un-
tethered, in a dark ‘indifferent’ environment and after the lizard has been held in
captivity for several days. These data are generally highly repeatable. Maximal
metabolic rate is measured by collecting gas samples from lizards® expired air while
running on a motorised treadmill at a given body temperature. Problems associated
with having lizards run at their aerobic maximum without recruiting anaerobic
resources and at a constant rate for a sustained period invariably results in a higher
level of experimental error than for measuring standard metabolic rate. Field
metabolic rate is measured by the injection of doubly labelled water and measuring
the loss of isotopic hydrogen and oxygen molecules (NaGy 1983). The accuracy of
this technique has been addressed (see BraDsHaw et al. 1987; Nacy 1989), however,
as the researchers have no control over the behaviour, movement, body temperature,
feeding and other variables that influence lizard metabolism, there is often consider-
able intra-specific variability. In addition, there is appreciable variability between
seasons in reported field metabolic rates for goannas (CHRisTIAN et al. 1995; CHRrisTIAN
et al. 1996a,b) requiring considerable caution to be used in the comparisons.

This paper endeavours to succinctly compare the metabolism of goannas with
other lizards and to describe the ecological consequences of these differences.

Results
Standard metabolic rate

The standard metabolic rate of Varanus scales inter-specifically with body mass®®
(THompsoN & WiTHERS 1992, 1994, 1997a: THomPsON et al. 1995). This differs
significantly from the inter-specific scaling for squamates that have a mass exponent
of approximately 0.80 (AnprEws & Pouch 1985). An inspection of Figure | indicates
that the standard metabolic rate for small goannas is about the same as that for other
lizards of a similar size and body temperature (7,). However, as the goannas get
larger, their mass-specific standard metabolic rate increases compared with other
squamartes.

ANDREWS and PoucH (1985) report the mean intra-specific mass exponent for
squamates to be 0.67. Goannas have a significantly higher intra-specific common
pooled mass exponent for standard metabolic rate, at about 0.97 (THOMPSON &
WITHERS 1997a).
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Fig. 1. Inter-specific comparison of standard metabolic rate for goannas (THoMPSON & WITHERS
1997a) and the dotted regression line for other squamates (ANDREws and PoucH, 1995).
Diamonds represent means for nine species of goannas.

When Trompson and WiThers (1997a) grouped nine species of Varanus into
widely-foraging (V. caudolineatus, V. gilleni. V. tristis. V. eremius, V. gouldii, V.
rosenbergi. V. panoptes and V. giganteus) and relatively sedentary (V. acanthurus
and V. brevicauda). the relatively sedentary group had a significantly lower standard
metabolic rate.

Maximal metabolic rate

The maximal metabolic rate for Varanus scales inter-specifically with body mass®”
(THomPsON & WiTHERS 1997a). Data for maximal metabolic rate for other squamaltes
are insufficient to provide an overall estimation of the inter-specific mass exponent.
however, for the five (6 data sets) species included in Figure 2 the inter-specific mass
exponent is 1.19. The maximal metabolic rate for goannas is significantly higher than
that for these lizards (Fig. 2, Taompson & WiTHERS 1997a).

TrompsoN and WiTHEeRs (1997a) report three arboreal species (V. caudolineatus. V.
gilleni and V. tristis, 17.4mass’®" at 35 °C) to have a significantly higher maximal
metabolic rate than terrestrial varanid species (4.8mass®* at 35 °C. Fi g. 3).

Field metabolic rate

Field metabolic rate is influenced by a range of factors including behaviour,
movement, body temperature and feeding. therefore the variability is likely to be
appreciable among species. Data from GReex et al. (1986. 1991a. b). Dirybex et al.
(1990, 1992), Christian et al. (1995. 19964, b) and THompsox et al. (1997) have been
used to estimate the field metabolic rate of Varanus (Tab. 1). These data have been
compared with that reported by Nacy (1982) for a variety of lizard species (Fig. 4).
There is a significant difference between the field metabolic rate of Varanus and the
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Fig. 2. Inter-specific comparison of maximal metabolic rate for goannas and selected other
lizards. Data for goannas from THompsox and WITHERS (1997a) and other lizards from GLEESON
et al. (1980), BENNETT and JoHN-ALDER (1984). JoHN-ALDER et al. (1983. 1986). CurisTiaN and
ConLey (1994) for other species.
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Fig. 3. Inter-specific comparison of maximal metabolic rates for arboreal and terrestrial
goannas. Open circles arboreal, filled squares terrestrial goannas (Tuompson & WITHERS
1997a).

saurians (ANCOVA, F 135 = 9.52, P < 0.01, body mass as the covariate) with goannas
being generally higher. The regression equation to predict field metabolic rate for the
11 species of goannas is log, mL CO, h' =-0.51 (zse 0.182) + 0.94 (+ se 0.058)
log,, mass, with mass in grams.
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Species season Mass CO, Source

(g mLglh
V. caudolineatus Summer 10.4 0.46 THOMPSON et al. 1997
V. acanthurus Sp/Su 60 0.10 DryYDEN et al. 1990
V. scalaris Wet 66.4 0.21 ChrisTian et al. 1996a
V. gouldii Early wet 1106 0.36 CHrisTIAN et al. 1995
V. rosenbergi Summer 1193 0.18 Green et al. 1991a
V. mertensi Wet 1208 0.20 CHrisTiaN et al. 1996b
V. bengalensis Dry 2560 0.25 DrypEn et al. 1992
V. panoptes Early wet 3404 0.24 ChRrisTiaN et al. 1995
V. giganteus Summer 5570 0.17 GrEEN et al. 1986
V. salvator Dry 7600 0.19 DryDEN et al. 1992
V. komodoensis Spring 16620 0.13 © Green et al. 1991b

Tab. 1. Field metabolic rates for goannas
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Fig. 4. Inter-specific comparison of field metabolic rates for goannas (filled triangles. data
from Tab. 1) and a selection of other lizards (filled circles, Nacy 1982).

Home range

Is the higher field metabolic rate of goannas associated with larger home ranges or
activity areas? Activity area data from Gree~ and Kina (1978), Weavers (1993), King
et al. (1989), PHiLLips (1995, pers. comm.) THompson (1994) and THOMPSON, DE BOER.
and Pianka (1999) are compared with the regression line reported by ChrisTiaN and
WaLpscamoT (1984) for a variety of widely-foraging lizard specics (Fig. 5). It is
evident from an inspection of Figure 5 that the activity areas of goannas are
approximately an order of magnitude larger than those for similar sized lizards.
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energetic size advantage as an individual grows. The calorific intake to sustain basal
levels of body functioning is directly proportional to body mass. This is in contrast
to many other squamates where the intra-specific metabolic scaling (b) = 0.67, and
the mass-specific calorific needs for larger individuals are comparatively lower than
those of the smaller individuals. As a consequence it is possible foraging areas and
the quantity of prey digested are likely to be larger for adult goannas than for similar-
sized species where the intra-specific mass-exponent is approximately 0.67. This
increased energy requirement could then influence the diet, foraging strategy,
foraging time and preferred body temperature of goannas. Most large lizards. other
than Varanus, are herbivorous (PoucH 1973; ZIMMERMAN & TRACY 1989), which may
suggest a relationship between diet and metabolic scaling. Most goannas are
carnivorous (SHINE 1986; Losos & GReene 1988: WEAVERS 1989; James et al. 1992;
Pianka 1994), with the main exception being V. olivaceus, which is omnivorous.
feeding primarily on molluscs, crustaceans, and fruits but not leaves. buds or flowers
(AUFFENBERG 1988). Although a number of herbivorous lizards are insectivorous as
Juveniles and sub-adults they change to a herbivorous diet as they increase their body
mass (Poucn 1973). Large goannas might be required to have a high energy
carnivorous diet in preference to a herbivorous diet to obtain sufficient energy
(GoLLey 1961) to sustain the higher standard metabolic rate.

Reptiles that are primarily carnivorous use a range of foraging strategies along a
continuum from sit-and-wait to widely-foraging (Pianka 1986). Goannas have been
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generally described as widely-foraging (Losos & Greene 1988; James et al. 1992),
Huey and Pianka (1981) suggest that daily energy requirements of widely-foraging
lizards are about 1.3-1.5 times greater than those of sit-and-wait predators: food gains
are about 1.3-2.1 times higher for the widely-foraging lizards. However, ANDERSON
and Karasov (1981) report the field metabolic rate to be approximately 1.5 times the
resting levels for Callisaurus draconoides, which spends less than 2 % of its 10 h
activity period in movement compared with 3.3 times for Cnemidophorus tigris,
which spends 91 % of its 5 h activity period moving. Though the widely-foraging C.
tigris had the higher rate of energy expenditure, its foraging efficiency (metabolisable
energy intake/energy expended) was higher than that of the sit-and-wait C. draco-
noides. There are no data on the foraging efficiencies of widely-foraging vs sit-and-
wait large lizards. Larger goannas with comparatively higher metabolic requirements
may be forced to adopt the widely-foraging mode (Losos & GREENE 1988; JamEs et
al. 1992) to sustain their resting level of metabolism because either the sit-and-wait
strategy or a herbivorous diet is inadequate to provide their energy requirements.
Alternatively, the relatively high metabolism of large goannas may have developed
in response to their widely-foraging strategy and carnivorous diet (Pouch 1973).
When the phylogeny of goannas is better understood. it may be possible o speculate
on the diet and foraging behaviour of the ancestral form. a precursor to answering the
possible causal evolutionary relationship between diet and metabolism for this family
of lizards.

The comparatively low standard metabolic rate of the two relatively sedentary
goannas (V. brevicauda and V. acanthurus) compared with the more widely-foraging
Varanus species is consistent with the findings of Beck and Lowe ( 1994) who report
the relatively large, sedentary carnivorous Heloderma horridum and H. suspectum to
have a low standard metabolic rate. DryDEN et al. (1990) suggests the relatively
inactive and secretive V. acanthurus is possibly a sit-and-wait predator. a foraging
mode associated with reduced energy expenditure (ANDERSON & Karasov 1981 ). The
short-limbed morphology (THompson & WiTHERS 1997b), diet (Pianka 1994) and
small activity area (James 1996) of V. brevicauda when taken together suggest this
varanid is possibly also a sit-and-wait predator which would correspond with its low
metabolism.

The generally higher maximal metabolic rate for goannas compared with other
lizards provides this family of saurians with the aerobic capacity to forage over a wide
area. This higher maximal aerobic capacity maybe due to the relative size. structure
and gas perfusion efficiency in goanna lungs compared with other lizards (Perry
1983, 1989). This is possibly reflected in the significantly larger activity areas or
home ranges of most goannas compared with similar-sized lizards (Fig. 5).

Maximal metabolic rate for three arboreal goannas (V. caudolineatus, V. gilleni
and V. tristis) is higher than for the other terrestrial species, although the maximal
metabolic rate for the arboreal V. scalaris is lower than that for terrestrial species
(ChrisTiaN et al. 1996a). This suggests that the maximal metabolic rate for arboreal
goannas might be generally higher than for terrestrial species with the difference for
V. scalaris being a reflection of research protocol differences. This hypothesis would
be relatively easy to test as V. mitchelli, V. varius. V. glauerti, V. keithhornei and V.
prasinus are all Australian arboreal goannas and accordingly should have higher
maximal metabolic rates than similar-sized, widely-foraging. terrestrial goannas. V.
pilbarensis and V. glebopalma are rock-dwelling goannas that scamper over large
boulders. an activity that requires considerable vertical movement. Given the habitat
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of these goannas, they may also have maximal metabolic rates similar to those of the
arboreal species; again this hypothesis is €asy to examine.

The mass exponent difference between standard (=0.92) and maximal (=0.,72)
metabolic rate results in high aerobic factorial scopes (maximal metabolic rate /
standard metabolic rate) for the smaller species. The factorial scope for V. caudo-
lineatus of 35 reported by THomPsoN and WithEgs ( 1997a) supports the earlier finding
of BicKLER and ANDErsox (1986) for the high factorial scope (=28) for the morpho-
logically and ecologically similar V., gilleni. Even V. brevicauda has an aerobic
factorial scope (=21, Thompsox & WITHERS 1997a) that is higher than that for most
other squamates (=10, Bennert 1982). It is. however. not as high as the two small
arboreal species V. caudolineqrus and V. gilleni. This suggests that both body mass
and ecology / performance traits are linked to aerobic factorial scope with small
goannas generally having a higher factorial scope. and the small arboreal species
having a higher factorial scope than the terrestrial species.

Maximal metabolic rates for goannas seem to be reflected in the habitat chojce
and foraging mode. If goanna ecology is the primary determinant of their mass-
specific maximal metabolic rate then it could be hypothesised that the mass-specific
maximal metabolic rate for V. baritji would be similar to V. acanthurus as they are
ecologically and morphologically similar (King & Horngr 1987). There is little or no
information on the natural history or ecology of a number of smal] goannas such as
V. storri, V. kingorum, V. prasinus and V. primordius. However. the relatively short
hind-limbs and the thick. short-tail of V. brevicauda, V. primordius and V. storri
suggest that they are neither arboreal. nor perhaps widely-foraging predators and are
possibly sit-and-wait predators or forage over a relatively small activity area. If there
is a close association between activity area size. foraging mode and perhaps
morphology with metabolism. these goannas would have comparatively low maximal
metabolic rates and perhaps a low standard metabolic rate.

Itis difficult to speculate on the maximal metabolic rate for V. mitchelli as so little
is known about its ecology. other than it is both semi-aquatic (around streams) and
arboreal. CHrisTian and ConLEy (1994) report the maximal metabolic rate for V.
mertensi to be lower than that for other similar-sized goannas: however, without more
detailed data on its ecology it is difficult to draw a link between its metabolism and
activity patterns but its low standard and maximal metabolic rates (CHrisTIAN &
ConLEY 1994; THomPsoN & WITHERS 1998) would suggest it is relatively sedentary.

The mass exponents for standard and field metabolic rates for saurians are about
0.80 (ANDREWS & Pouch 1985: Nagy 1982). The mass exponents for standard and
field metabolic rates for Varanus are about 0.92-0.94 (THompsoN & WiTHERS 19972).
The mass exponents for maximal metabolic rates for goannas and other saurians differ
significantly from the mass exponents for standard and field metabolic rates for
goannas. Standard or maintenance levels of metabolism are an obvious component of
both maximal and the field metabolic rate. The ‘activity’ component of field
metabolic rate is affected by factors such as behaviour, movement, body temperature,
feeding and reproductive status. The link between standard and maximal metabolic
rates is not clear. A positive correlation has been reported between standard and
maximal metabolic rates for some squamates and anurans (BENNETT & RuBen 1979:
BENNETT 1982; TaiGEN 1983, LoUMBOURDIS & HaiLey 1985). However, other studies
of lizards (PoucH & ANDREWS 1984) and salamanders (Feper 1987) suggest no
necessary relationship between the metabolic rate of rest and activity. Data presented
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here suggests that there may be a stronger link between mass exponents for standard
and field metabolic rates than standard and maximal metabolic rates.
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